Answer on Question \#42249-Math-Statistics and Probability

Assume that the samples are independent and that they have been randomly selected. Construct a 90\% confidence interval for the difference between population proportions p1-p2. Round to three decimal places.
$x 1=24, n 1=51, x 2=29, n 2=56$

Solution

The confidence interval estimate of the difference $p_{1}-p_{2}$ is

$$
\widehat{p_{1}}-\widehat{p_{2}}-\mathrm{E}<p_{1}-p_{2}<\widehat{p_{1}}-\widehat{p_{2}}+E .
$$

Where the margin of error E is given by
$E=z_{\alpha / 2} \sqrt{\frac{\widehat{p_{1}} \cdot \widehat{q_{1}}}{n_{1}}+\frac{\widehat{p_{2}} \cdot \widehat{q_{2}}}{n_{2}}}$.
$x_{1}=24, n_{1}=51, x_{2}=29, n_{2}=56$.
$\widehat{p_{1}}-\widehat{p_{2}}=\frac{x_{1}}{n_{1}}-\frac{x_{2}}{n_{2}}=\frac{24}{51}-\frac{29}{56}=-0.047$.
$z_{\alpha / 2}$ for a 90% confidence interval is $z_{0.05}=1.645$.

$$
E=1.645 \cdot \sqrt{\frac{\frac{24}{51} \cdot \frac{27}{51}}{51}}+\frac{\frac{29}{56} \cdot \frac{27}{56}}{56}=0.159 .
$$

The confidence interval estimate of the difference $p_{1}-p_{2}$ is

$$
-0.047-0.159<p_{1}-p_{2}<-0.047+0.159
$$

Answer: (-0.206; 0.112).

