Problem. Prove that intersection of two dense subsets is again dense subset. **Counterexample.** The sets \mathbb{Q} and $\mathbb{Q} + \sqrt{3}$ are dense in \mathbb{R} with the usual topology, but their intersection $\mathbb{Q} \cap (\mathbb{Q} + \sqrt{3}) \neq \emptyset$ isn't dense in \mathbb{R} .

Solution. This fact is true if only one of this subsets is open. Let (X, T) be a topological space. Suppose that U is a dense open subset of X and D is any dense subset of X. If $V \in T$ is a nonempty open set in X, then $V \cap U \in T$ is a non-empty open set. D is a dense subset of X, so $(V \cap U) \cap D \neq \emptyset$. Hence, $V \cap (U \cap D) \neq \emptyset$ and indeed $U \cap D$ is dense in X.