Answer on Question #42158 – Math -Real Analysis

Is the function $f: \mathbb{R}^2 \setminus \{0,0\} \to \mathbb{R}^2$ defined by $f(x,y) = \left(\frac{x}{x^2+y^2}, -\frac{y}{x^2+y^2}\right)$ continuous on $\mathbb{R}^2 \setminus \{0,0\}$?

Solution.

Theorem. Let $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ be given by

$$f(x) = (f_1(x); ...; f_m(x)).$$

 $f(x) = (f_1(x); ...; f_m(x)).$ Then f is continuous at a $a \in A$ if and only if f_i is continuous at a for i = 1, 2, ..., m.

So it is enough to show that functions $f_1(x, y) = \frac{x}{x^2+y^2}$ and $f_2(x, y) = -\frac{y}{x^2+y^2}$ are continuous on $\mathbb{R}^2 \setminus \{0,0\}$. They are continuous as fraction of the two continuous functions.

Answer: Yes, It is.