Answer on Question \#42077 - Math - Statistics and Probability

By the statement of this question, if $P(\xi<2000)=0.1, E(\xi)=3000$, then
$P(3000+b \eta<2000)=0.1, b$ is standard deviation of ξ (it is unknown, it can be found from assumptions of this assignment). Rewrite the last equality
$P\left(\eta<\frac{2000-3000}{b}\right)=0.1$, it means
$F_{\eta}\left(-\frac{1000}{b}\right)=0.1$, where F_{η} is the standard normal cumulative distribution function.
Take the argument corresponding to a value of 0.1 of the standard normal cumulative distribution function from corresponding tables. We define
$-\frac{1000}{b} \approx-1.28$ (more exactly $-\frac{1000}{b}=\operatorname{NORMSINV}(0,1)=-1.28155$ via an Excel function).
So, $-\frac{1000}{b}=-1.28155$, from where we conclude
$b=\frac{1000}{1.28155}=780.3051$.
Rewrite
$P(\xi<2000+x)=0.03$ and obtain $P(3000+b \eta<2000+x)=0.03$ or $P\left(\eta<\frac{x-1000}{b}\right)=0.03$. In similar way,
$\frac{x-1000}{b}=-1.88079$, whence

$$
x=-1.88079 * b+1000=-1.88079 * 780.3051+1000=-467.59 .
$$

Finally, we set a new value $2000+x=2000-467.59=1532.41$
Answer: 1532.41

