Answer on Question \#42032 - Math - Calculus

What is the common property between determinants, integrals and derivatives?

Solution.

All this operations are linear, i.e. the property

$$
L(\alpha a+\beta b)=\alpha \cdot L a+\beta \cdot L b
$$

obeys for all objects a and b of common nature (among three objects, that are named) and all the numbers α and β.

But we must determine what this operation means for determinates.
If we write an $n \times n$ matrix in terms of its column vectors $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, where the a_{j} are vectors of size n, then the determinant of A is defined so that
$\left|a_{1}, \ldots, b a_{j}+c v, \ldots, a_{n}\right|=b \cdot|A|+c \cdot\left|a_{1}, \ldots, v, \ldots . a_{n}\right|$,
where b and c are scalars, v is any vector of size n.
This equation says that the determinant is a linear function of each column.
A similar procedure is determined for strings of a determinant.
Note, that this property can not be right, if an integral becomes divergent.
Answer: linearity.

