

Answer on Question #42009 - Math - Vector Calculus

Vector \vec{r} has following components in Descartes coordinate system: $\vec{r}=(x; y; z)$, $r=\sqrt{x^2+y^2+z^2}$.

Let us evaluate this cross product using the Leibniz rule for nabla operator:

$$[\nabla, \frac{\vec{r}}{r}] = \frac{1}{r} [\nabla, \vec{r}] + [\nabla(\frac{1}{r}), \vec{r}]$$

Let us use the property of nabla operator $\nabla f(r) = \frac{\partial f(r)}{\partial r} \cdot \frac{\vec{r}}{r}$. It is easy to prove it. Let us take x-component of nabla operator: $\frac{\partial}{\partial x} f(\sqrt{(x^2+y^2+z^2)}) = \frac{\partial f(r)}{\partial \sqrt{(x^2+y^2+z^2)}} \cdot \frac{2x}{2\sqrt{(x^2+y^2+z^2)}} = \frac{\partial f(r)}{\partial r} \cdot \frac{x}{r}$. The same result takes place for y and z derivative (with y and z in numerator respectively).

Thus, $\nabla(\frac{1}{r}) = \frac{-1}{r^2} \cdot \frac{\vec{r}}{r} = \frac{-\vec{r}}{r^3}$, so $[\nabla(\frac{1}{r}), \vec{r}] = \frac{-1}{r^3} [\vec{r}, \vec{r}] = 0$ (according to the properties of cross product, $[\vec{a}, \vec{a}] = 0$).

The term $[\nabla, \vec{r}] \equiv \text{rot } r$ is equal to zero. By definition, $[\nabla, \vec{r}]_k = \epsilon_{ijk} \nabla_i (\vec{r})_j$. Since Levi-Civita tensor is not equal to zero only if its indexes are different, and $\nabla_i \vec{r}_j = \delta_{ij}$, all components of $[\nabla, \vec{r}]$ are equal to zero, thus $[\nabla, \vec{r}] = 0$.

Finally, $[\nabla, \frac{\vec{r}}{r}] = \frac{1}{r} [\nabla, \vec{r}] + [\nabla(\frac{1}{r}), \vec{r}] = 0$.