Answer on Question \#42009 - Math - Vector Calculus

Vector \vec{r} has following components in Descartes coordinate system: $\vec{r}=(x ; y ; z)$, $r=\sqrt{x^{2}+y^{2}+z^{2}}$.

Let us evaluate this cross product using the Leibniz rule for nabla operator:

$$
\left[\nabla, \frac{\vec{r}}{r}\right]=\frac{1}{r}[\nabla, \vec{r}]+\left[\nabla\left(\frac{1}{r}\right), \vec{r}\right]
$$

Let us use the property of nabla operator $\nabla f(r)=\frac{\partial f(r)}{\partial r} \cdot \frac{\vec{r}}{r}$. It is easy to prove it. Let us take xcomponent of nabla operator: $\frac{\partial}{\partial x} f\left(\sqrt{\left(x^{2}+y^{2}+z^{2}\right)}\right)=\frac{\partial f(r)}{\partial \sqrt{\left(x^{2}+y^{2}+z^{2}\right)}} \cdot \frac{2 x}{2 \sqrt{\left(x^{2}+y^{2}+z^{2}\right)}}=\frac{\partial f(r)}{\partial r} \cdot \frac{x}{r}$. The same result takes place for y and z derivative (with y and z in numerator respectively).

Thus, $\quad \nabla\left(\frac{1}{r}\right)=\frac{-1}{r^{2}} \cdot \frac{\vec{r}}{r}=\frac{-\vec{r}}{r^{3}}$, so $\quad\left[\nabla\left(\frac{1}{r}\right), \vec{r}\right]=\frac{-1}{r^{3}}[\vec{r}, \vec{r}]=0 \quad$ (according to the properties of cross product, $\quad[\vec{a}, \vec{a}]=0 \quad$).

The term $[\nabla, \vec{r}] \equiv$ rot r is equal to zero. By definition, $[\nabla, \vec{r}]_{k}=\varepsilon_{i j k} \nabla_{i}(\vec{r})_{j}$. Since Levi-Civita tensor is not equal to zero only if its indexes are different, and $\nabla_{i} \vec{r}_{j}=\delta_{i j}$, all components of
$[\nabla, \vec{r}]$ are equal to zero, thus $[\nabla, \vec{r}]=0$.
Finally, $\quad\left[\nabla, \frac{\vec{r}}{r}\right]=\frac{1}{r}[\nabla, \vec{r}]+\left[\nabla\left(\frac{1}{r}\right), \vec{r}\right]=0$.

