Answer on Question \#42004- Math - Algebra

Question:

In september 1998 the population of the country of West Goma in millions was modeled by $\mathrm{f}(\mathrm{x})=$ $16.9 \mathrm{e}^{\wedge} 0.0019 \mathrm{x}$. At the same time the population of East Goma in millions was modeled by $g(x)=13.5 e^{\wedge} 0.0106 x$. In both formulas x is the year, where $x=0$ corresponds to September 1998. Assuming these trends continue, estimate what the population will be when the populations are equal.

Solution:

When the populations are equal we have $f(x)=g(x)$

$$
16.9 \mathrm{e}^{0.0019 \mathrm{x}}=13.5 \mathrm{e}^{0.0106 \mathrm{x}}
$$

Take natural logarithm in both parts:

$$
\begin{gathered}
\log 16.9+\log \mathrm{e}^{0.0019 \mathrm{x}}=\log 13.5+\log \mathrm{e}^{0.0106 \mathrm{x}} \\
\log 16.9+0.0019 \mathrm{x}=\log 13.5+0.0106 \mathrm{x} \\
0,0087 x=\log 16.9-\log 13.5 \\
0,0087 x=\log \frac{169}{135} \\
x=\frac{\log \frac{169}{135}}{0,0087}=25.818843274097014174767797601939 \approx 25.82
\end{gathered}
$$

Hence, the population of each city, when the populations are equal, will be $\left.16.9 \mathrm{e}^{0.0019 \mathrm{x}}\right|_{x=25.82} \approx$ 17,75 .

Answer: 17,75.

