Answer on Question \# 42002 - Math - Calculus

The intensity I of light varies inversely as the square of the distance D from the source. If the intensity of illumination on a screen 5 ft from a light is 4 foot candles, find the intensity on a screen 20 ft from the light.

Solution:

Intensity varies iversely as the square of the distance D from the source (k coefficient):

$$
\mathrm{I}=\frac{\mathrm{k}}{\mathrm{D}^{2}}
$$

In first case ($\left.D_{1}=5 f t, I_{1}=4 \mathrm{fc}\right)$:

$$
\begin{equation*}
\mathrm{I}_{1}=\frac{\mathrm{k}}{\mathrm{D}_{1}^{2}} \tag{1}
\end{equation*}
$$

In second case ($\left.\mathrm{D}_{2}=20 \mathrm{ft}\right):$:

$$
\begin{gather*}
\mathrm{I}_{2}=\frac{\mathrm{k}}{\mathrm{D}_{2}^{2}}(2) \tag{2}\\
\quad(2) \div(1): \\
\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{k}}{\mathrm{D}_{2}^{2}} \cdot \frac{\mathrm{D}_{1}^{2}}{\mathrm{k}}=\frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}} \\
\mathrm{I}_{2}=\mathrm{I}_{1} \frac{\mathrm{D}_{1}^{2}}{\mathrm{D}_{2}^{2}}=4 \mathrm{fc} \cdot \frac{(5 \mathrm{ft})^{2}}{(20 \mathrm{ft})^{2}}=0.25 \mathrm{fc}
\end{gather*}
$$

Answer: intensity is equal to 0.25 foot candles.

