Answer on Question \#41943, Math, Statistics and Probability
The lifetime X of a bulb is a random variable with the probability density function:

$$
f(x)=\left\{\begin{array}{c}
6 \cdot\left[0.25-(x-1.5)^{2}\right], \quad \text { when } 1 \leq x \leq 2 \\
0, \quad \text { otherwise }
\end{array}\right.
$$

X is measured in multiples of 1000 hrs . What is the probability that none of the three bulbs in a traffic signal have to be replaced in the first 1500 hrs of their operation?

Solution

Let T_{i} is the random variable of a lifetime (is measured in multiples of 1000 hrs) of i -th bulb, where $i=$ $1,2,3$. If $A=$ "lifetime of each bulb is longer than 1500 hrs ", then

$$
P(A)=P\left(T_{1} \geq 1.5\right) \cdot P\left(T_{2} \geq 1.5\right) \cdot P\left(T_{3} \geq 1.5\right)
$$

$$
\begin{aligned}
P\left(T_{1} \geq 1.5\right)= & \int_{1.5}^{\infty} f(x) d x=\int_{1.5}^{2} 6 \cdot\left[0.25-(x-1.5)^{2}\right] d x=\left.\left(\frac{3}{2} x-2(x-1.5)^{3}\right)\right|_{1.5} ^{2} \\
& =\left(3-2 \cdot 0.5^{3}\right)-\frac{9}{4}=\frac{1}{2}
\end{aligned}
$$

So

$$
P(A)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8} .
$$

Answer: $\frac{1}{8}$.

