A random sample of 10 units of mobile phone batteries from manufacturer A gave a lifetime with standard deviation of 5 months while a random sample of 13 units of batteries from manufacturer B gave a lifetime with standard deviation of 4 months. Assume the population to be approximately normal with equal variances. Use a 0.10 level of significance.

Solution

Step 1. State $H_{o}: \sigma_{1}^{2}=\sigma_{2}^{2}, H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}=0.01$.
Step 2. Type of test - two-tailed test.
Step 3. Level of significance: $\alpha=0.1$.
Step 4. Critical values: $f\left(\frac{\alpha}{2}, n_{1}-1, n_{2}-1\right)=f(0.05 ; 9 ; 12)=3.07$ and $f(0.95 ; 9 ; 12)=2.80$
Step 5. Decision rule: Reject H_{o} if $\left(\frac{s_{1}}{s_{2}}\right)^{2}<f\left(1-\frac{\alpha}{2}, n_{1}-1, n_{2}-1\right)$ or $\left(\frac{s_{1}}{s_{2}}\right)^{2}>f\left(\frac{\alpha}{2}, n_{1}-1, n_{2}-1\right)$.
Step 6. Compute the statistic:

$$
\begin{gathered}
\left(\frac{s_{1}}{s_{2}}\right)^{2}=\left(\frac{5}{4}\right)^{2}=1.5625 \\
\left(\frac{s_{1}}{s_{2}}\right)^{2}<f(0.95 ; 9 ; 12)(1.5625>2.80)
\end{gathered}
$$

Step 7. Conclusion:
Reject H_{o}. We have statistical evidence at a 10% level of significance to believe that the true variances are not equal each other.

