A random sample of 10 mobile phone batteries has a lifetime with variance 16 months. Assuming the lifetime of batteries to be normally distributed, construct a 95% confidence interval for the variance of all such mobile phone batteries.

Solution

For a confidence level $1-\alpha$ confidence interval for the variance is

$$
\frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2}}^{2}} \leq \sigma^{2} \leq \frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2}}^{2}}
$$

where s^{2} is a sample variance, n is a sample size.

For a sample size of $n=10$, we will have $d f=n-1=9$ degrees of freedom. For a 95% confidence interval, we have $\alpha=0.05$, which gives 2.5% of the area at each end of the chi-square distribution. We find values of $\chi_{0.975}^{2}=2.700$ and $\chi_{0.025}^{2}=19.023$. This leads to the inequality for the variance

$$
\frac{9 \cdot 16}{19.023} \leq \sigma^{2} \leq \frac{9 \cdot 16}{2.700} \rightarrow 7.570 \leq \sigma^{2} \leq 53.333
$$

Answer: $7.570 \leq \sigma^{2} \leq 53.333$.

