Answer on Question \# 41936, Math, Statistics and Probability

Five universities in Malaysia were surveyed. The sample contained 250 information technology students, 80 being women; 160 bioinformatics students, 40 being women. Compute a 90% confidence interval for the difference between the proportions of women in these two programs.

Solution

An interval estimate for the difference in proportions $\widehat{p_{1}}-\widehat{p_{2}}$ with confidence level $(1-\alpha)$ is given by

$$
\widehat{p_{1}}-\widehat{p_{2}} \pm z_{\alpha / 2} \sqrt{S E_{1}^{2}+S E_{2}^{2}}
$$

where $S E_{1}$ and $S E_{2}$ are the standard errors of $\widehat{p_{1}}$ and $\widehat{p_{2}}$, respectively.
In our case:

$$
\widehat{p_{1}}=\frac{80}{250}=0.32, \widehat{p_{2}}=\frac{40}{160}=0.25 .
$$

The standard errors of $\widehat{p_{1}}$ and $\widehat{p_{2}}$ are

$$
S E_{1}=\sqrt{\frac{0.32(1-0.32)}{250}}, S E_{2}=\sqrt{\frac{0.25(1-0.25)}{160}} .
$$

A 90\% confidence interval for the difference between the proportions of women in these two programs is
$0.32-0.25 \pm z_{0.05} \sqrt{\frac{0.32(1-0.32)}{250}+\frac{0.25(1-0.25)}{160}}=0.07 \pm 1.645 \cdot 0.045=0.07 \pm 0.07$ or $(0 ; 0.14)$
Answer: A 90\% confidence interval for the difference is (0\%; 14\%).

