Answer on Question \#41885 - Math - Statistics and Probability

In a random sample of 40 felons convicted of aggravated assault, it was determined that the mean length of sentencing was 54 months, with a standard deviation of 8 months. Construct and interpret a 95% confidence interval for the mean length of sentence for an aggravated assault conviction.

Solution:

Sample size $\mathrm{n}=40$ (large sample)
Sample mean $\bar{x}=54$
Standard deviation $\sigma=8$.
$\gamma=0.95$ - confidence probability
Since $1-\alpha=0.95, \alpha / 2=0.025$, and $z_{0.025}=1.96$, the large sample 95% confidence interval for μ becomes $\left(\bar{x}-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} ; \bar{x}-Z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)=\left(54-1.96 \frac{8}{\sqrt{40}} ; 54+1.96 \frac{8}{\sqrt{40}}\right)=(51.52 ; 56.48)$.

This means that we can be 95% confident that the mean length of sentencing is in the interval 51.52 to 56.48 months.

