Answer on Question \# 41848- Math - Algebra

I have to find the portion of the distance " x " of hypotenuse, of a right triangle with one leg equal 18 , a circle inside the triangle with a radius of 5 . There's a letter " C " inside the circle. Also, the teacher said to put the letter " C ", down by the leg with the value of 18 . I have no other information. The distance " x " is not specified as anything. It's just a portion of the hypotenuse! Help!!!

Solution:

Let d denotes a hypotenuse, and a, b denote the legs

The parts of legs that are marked by c are equal.
The radius of the inscribed circle in the right triangle is calculated by the formula $r=\frac{a+b-d}{2}$.
So, we get $5=\frac{a+18-d}{2}$, hence $a=d-8$. From Pythagorean theorem we get $d^{2}=a^{2}+18^{2}$, substituting $a=d-8$, we get $d^{2}=(d-8)^{2}+324$.

$$
\begin{gathered}
d^{2}=d^{2}-16 d+64+324 \\
d^{2}=d^{2}-16 d+64+324 \\
16 d=388 \\
d=24.25
\end{gathered}
$$

Thus, $a=24.25-8=16.25$. Now, let's find the value of $\cos \alpha=\frac{b}{d}=\frac{18}{24.25}=0.74 \cdot \sin \frac{\alpha}{2}=\sqrt{\frac{1-\cos \alpha}{2}}=$ $\sqrt{\frac{1-0.74}{2}}=0.359, \cos \frac{\alpha}{2}=\sqrt{\frac{1+\cos \alpha}{2}}=\sqrt{\frac{1+0.74}{2}}=0.933, \operatorname{tg} \frac{\alpha}{2}=\frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}=0.385$. So, $c=\frac{r}{\operatorname{tg} \frac{\alpha}{2}}=13$. Hence, $x=$ $24.5-13=11.5$.

Answer: $x=11.5$.

