Answer on Question \# 41846, Math, Statistics and Probability

100 people are asked to choose a name for a baby. They are given 14 names to choose from. What is the probability $2 / 3$ of the 100 people will choose the same name?

Solution.

There are 14^{100} ways to 100 people to choose a name for a baby from 14 given names.
There are $14 \cdot\binom{100}{67} \cdot 13^{100-67}=14 \cdot\binom{100}{67} \cdot 13^{33}$ ways to exactly 67 people to choose the same name for a baby from 14 given names.
There are $14 \cdot\binom{100}{68} \cdot 13^{100-68}=14 \cdot\binom{100}{68} \cdot 13^{32}$ ways to exactly 68 people to choose the same name for a baby from 14 given names.

There are $14 \cdot\binom{100}{100} \cdot 13^{100-100}=14$ ways to exactly 100 people to choose the same name for a baby from 14 given names.
Since $\left[\frac{2}{3} \cdot 100\right]=67$, the probability equals

$$
\frac{14 \cdot\binom{100}{67} \cdot 13^{33}+14 \cdot\binom{100}{68} \cdot 13^{32}+\cdots+14}{14^{100}}
$$

Answer:

$$
\begin{aligned}
& \frac{14 \cdot\binom{100}{67} \cdot 13^{33}+14 \cdot\binom{100}{68} \cdot 13^{32}+\cdots+14}{14^{100}}=\frac{\sum_{i=1}^{34} \frac{14 * 100!* 13^{34-i}}{(34-i)!(i+66)!}}{14^{100}}= \\
& =\frac{2466729392963409926902139089490763139099856409683268608861906362}{14^{100}} \\
& \approx 6.02 * 10^{-51}
\end{aligned}
$$

