

Answer on Question # 41766 – Math - Calculus

Expand $(4-x) / (2-x)(1-x)^2$ in ascending powers of x , stating when the expansion is valid; also write down the coefficient of x^n .

Answer.

$$f(x) = \frac{4-x}{(2-x)(1-x)^2} = \frac{3}{(1-x)^2} - \frac{2}{1-x} + \frac{2}{2-x}$$

McLaurin series expansions :

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

$$\frac{1}{2-x} = \sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}}$$

$$\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty} (n+1)x^n$$

So,

$$f(x) = \sum_{n=0}^{\infty} [3(n+1) - 2 + \frac{1}{2^n}]x^n = \sum_{n=0}^{\infty} (3n+1 + \frac{1}{2^n})x^n$$

The coefficient of x^n is $3n+1 + \frac{1}{2^n}$.

Expansion is valid for $|x| < 1$.