Answer on Question # 41714 – Math – Real Analysis

Assume $a = a(t) \in L1(0,1) \cap C(0,\infty)$, $\infty \ge a(0+) \>$; $a(\infty) \ge 0$ and $a(t) \ge 0$, $a'(t) \le 0$, $a''(t) \ge 0$, $a'''(t) \le 0$, on $(0,\infty)$. Let h(t) = ta(t) on $(0,\infty)$. Then one of the following is true. There exists a number $\varepsilon \>$; 0 such that h is increasing on $(0, \varepsilon)$. Or, there is no such interval. Which is correct? Prove it.

Solution.

 $h(t) \in L_1(0,1) \cap C(0;\infty)$, as a composition of a(t) and continuous function t. h(t) has the same order of derivatives as a(t).

Consider the derivative of h(t):

$$h'(t) = \left(t \cdot a(t)\right)' = a(t) + ta'(t).$$

We obtain that $ta'(t) \le 0$, as t > 0 and $a'(t) \le 0$ on $(0; \infty)$.

So, h(t) is increasing on interval $(0, \varepsilon)$ if a(t) + ta'(t) > 0 on it. As function a(t) is decreasing and t is increasing on $(0; \infty)$ there exist $t \in (0, \varepsilon) \subset (0; \infty)$: a(t) > ta'(t).

For example, consider $a(t) = e^{-t}$ on $(0, \infty)$. $a(t) \in L_1(0,1) \cap C^{\infty}(0, \infty)$. And

$$\begin{aligned} a'(t) &= -e^{-t} \le 0, \\ a''(t) &= e^{-t} \ge 0, a'''(t) = -e^{-t} \le 0 \text{ on } (0, \infty). \\ h(t) &= te^{-t} \text{ on } (0; \infty). \\ h'(t) &= e^{-t} - te^{-t} > 0 \text{ for } t \in (0, \varepsilon), \quad here \ \varepsilon = 1 \end{aligned}$$

$$h(t) = te^{-t}:$$

Answer. There exists a number $\varepsilon \ge 0$ such that *h* is increasing on $(0, \varepsilon)$.