Answer on Question \#4157 - Math - Trigonometry

how many solution sets of cos square theta are possible?

Solution:

Initial equation:

$$
\begin{gathered}
\cos ^{2} \theta=\alpha \\
\cos ^{2} \theta=\alpha \Longrightarrow \\
\text { 1) } \cos \theta=\sqrt{\alpha} ; \quad \text { 2) } \cos \theta=-\sqrt{\alpha}
\end{gathered}
$$

For $0 \leq \alpha \leq 1$:

First case:

$$
\begin{gathered}
\cos \theta=\sqrt{\alpha} \\
\theta= \pm \arccos (\sqrt{\alpha}) \pm 2 \pi n, n \in Z
\end{gathered}
$$

Second case:

$$
\cos \theta=-\sqrt{\alpha}
$$

$$
\theta= \pm \arccos (-\sqrt{\alpha}) \pm 2 \pi n, n \in Z
$$

Hence, for $0 \leq \alpha \leq 1$ we have has infinitely many solutions.
$\alpha \in(-\infty, 0) \cup(1,+\infty):$

$$
-1 \leq \cos \theta \leq 1 \Rightarrow 0 \leq \cos ^{2} \theta \leq 1
$$

Thus, for values $\alpha>1$ and $\alpha<0$ an equation has no solution.
Answer: number of solutions: $\left\{\begin{array}{c}\infty \text { for } 0 \leq \alpha \leq 1 \\ 0 \text { for } \alpha \in(-\infty, 0) \cup(1,+\infty)\end{array}\right.$

