Answer on Question \#41512 - Math - Statistics and Probability

$\alpha=.05,1-\alpha=.95, \frac{\alpha}{2}=.025, z_{.025}=1.960$.
Lower limit for 95\% confidence interval:
$\bar{p}-Z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}=\bar{p}-1.960 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$, where $\bar{p}=\frac{x}{n}, \quad x=$ number having the characteristic in a random sample of size n.

Upper limit for 95\% confidence interval:
$\bar{p}+Z_{\frac{\alpha}{2}} \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}=\bar{p}+1.960 \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}$, where $\bar{p}=\frac{x}{n}, \quad x=$ number having the characteristic in a random sample of size n.

