Answer on Question \#41510 - Math - Algebra

Question. In a survey of a TriDelt chapter with 50 members, 18 were taking mathematics, 33 were taking English, and 5 were taking both. How many were not taking either of these subjects?

Solution. Let

- X be the set of all members,
- M be the subset of X consisting of members taking mathematics,
- E be the subset consisting of members taking English,
- B be the subset consisting of members taking both mathematics and English,
- N be the subset consisting of members taking neither of these subjects.

If we denote by $|Y|$ the number of elements of a set Y, then by assumption

$$
|X|=50, \quad|M|=18, \quad|E|=33, \quad|B|=5
$$

We have to find $|N|$.
Evidently,

$$
N=X \backslash(M \cup E),
$$

therefore

$$
|N|=|X|-|M \cup E| .
$$

So we need to compute $|M \cup E|$. Notice that

$$
B=M \cap E,
$$

and

$$
M \cup E=M \cup(E \backslash B)
$$

Since the latter two sets are disjoint, we obtain that

$$
|M \cup E|=|M|+|E \backslash B|
$$

But

$$
|E \backslash B|=|E|-|B|
$$

so

$$
|M \cup E|=|M|+|E \backslash B|=|M|+|E|-|B| .
$$

Hence

$$
\begin{aligned}
|N| & =|X|-|M \cup E| \\
& =|X|-(|M|+|E|-|B|) \\
& =|X|-|M|-|E|+|B| \\
& =|X|+|B|-|M|-|E| \\
& =50+5-18-33=55-51 \\
& =4 .
\end{aligned}
$$

Answer. Number of members taking neither mathematics nor English is 4.

