Answer on Question \#41478 - Math - Calculus

Sketch the region bounded by $f(x)=1+2 e x, g(x)=1+4 e-x, x=-1$ and $x=1$. Using calculus, find the area of the region, showing all the working. Express your answer in simplified exact form.
step by step working out

Solution:

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=1+2 \mathrm{e}^{\mathrm{x}} \\
\mathrm{~g}(\mathrm{x})=1+4 \mathrm{e}^{-\mathrm{x}}
\end{gathered}
$$

Area of the region can be represented as the sum of two areas:

$$
\begin{equation*}
S=S_{1}+S_{2} \tag{1}
\end{equation*}
$$

First, we must determine the x-intercept (point A):

$$
\begin{gathered}
\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \\
1+2 \mathrm{e}^{\mathrm{x}}=1+4 \mathrm{e}^{-\mathrm{x}} \\
\mathrm{e}^{\mathrm{x}}=\frac{2}{\mathrm{e}^{\mathrm{x}}} \\
\mathrm{e}^{2 \mathrm{x}}=2 \\
2 \mathrm{x}=\ln (2) \\
\mathrm{x}=\frac{\ln (2)}{2}=\ln (\sqrt{2})=\mathrm{x}_{\mathrm{A}}
\end{gathered}
$$

Now we can find area S_{1} and S_{2} :
Formula for finding the area between two curves:

$$
\text { Area }=\int_{\mathrm{a}}^{\mathrm{b}}\left(\mathrm{f}_{1}(\mathrm{x})-\mathrm{f}_{2}(\mathrm{x})\right) \mathrm{d} x
$$

Area S_{1} : (boundaries are $\mathrm{x}=-1, \mathrm{x}=\mathrm{x}_{\mathrm{A}}=\ln (\sqrt{2})$)

$$
\begin{gathered}
\mathrm{S}_{1}=\int_{-1}^{\ln (\sqrt{2})}(\mathrm{g}(\mathrm{x})-\mathrm{f}(\mathrm{x})) \mathrm{dx}=\int_{-1}^{\ln (\sqrt{2})}\left(1+4 \mathrm{e}^{-\mathrm{x}}-\left(1+2 \mathrm{e}^{\mathrm{x}}\right)\right) \mathrm{dx}= \\
\quad=2 \int_{-1}^{\ln (\sqrt{2})}\left(2 \mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right) \mathrm{dx}=\left.2\left(-2 \mathrm{e}^{-\mathrm{x}}-\mathrm{e}^{\mathrm{x}}\right)\right|^{\ln (\sqrt{2})}= \\
\quad=2\left(-\sqrt{2}+2 \mathrm{e}-\sqrt{2}+\frac{1}{\mathrm{e}}\right)=2\left(-2 \sqrt{2}+2 \mathrm{e}+\frac{1}{\mathrm{e}}\right)
\end{gathered}
$$

Area S_{2} : (boundaries are $\mathrm{x}=\mathrm{x}_{\mathrm{A}}=\ln (\sqrt{2}), \mathrm{x}=1$)

$$
\begin{gathered}
S_{1}=\int_{\ln (\sqrt{2})}^{1}(f(x)-g(x)) d x=\int_{\ln (\sqrt{2})}^{1}\left(\left(1+2 \mathrm{e}^{\mathrm{x}}\right)-\left(1+4 \mathrm{e}^{-\mathrm{x}}\right)\right) \mathrm{dx}= \\
=2 \int_{\ln (\sqrt{2})}^{1}\left(\mathrm{e}^{\mathrm{x}}-2 \mathrm{e}^{-\mathrm{x}}\right) \mathrm{dx}=\left.2\left(\mathrm{e}^{\mathrm{x}}-2 \mathrm{e}^{-\mathrm{x}}\right)\right|_{\ln (\sqrt{2})} ^{1}= \\
=2\left(\mathrm{e}-\sqrt{2}+\frac{2}{\mathrm{e}}-\sqrt{2}\right)=2\left(-2 \sqrt{2}+\mathrm{e}+\frac{2}{\mathrm{e}}\right) \Rightarrow(1) \\
\mathrm{S}=\mathrm{S}_{1}+\mathrm{S}_{2}=2\left(-2 \sqrt{2}+2 \mathrm{e}+\frac{1}{\mathrm{e}}\right)+2\left(-2 \sqrt{2}+\mathrm{e}+\frac{2}{\mathrm{e}}\right)=-8 \sqrt{2}+\frac{6}{\mathrm{e}}+6 \mathrm{e}
\end{gathered}
$$

Answer: $\mathrm{S}=-8 \sqrt{2}+\frac{6}{\mathrm{e}}+6 \mathrm{e}$.

