Answer on Question\#41427 - Math - Calculus

Task:

The diameter of a cat's pupil is given by $f(x)=\frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}$ where x is the intensity of light on the pupils.

1. By considering lim as x tends to infinity of $f(x)$, determine the diameter of the cat's pupils due to very intense light.
2. Show that $\mathrm{f}(\mathrm{x})$ may be written as $f(x)=\frac{160+90 x^{0.4}}{4+15 x^{0.4}}$
3. Deduce the diameter of the cat's pupil for as light diminishes to a minimum intensity.

Solution:

1. $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}=\lim _{x \rightarrow \infty} \frac{\frac{160}{x^{0.4}}+90}{\frac{4}{x^{0.4}+15}}=\frac{90}{15}=6$.
2. $f(x)=\frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}=\frac{\frac{160}{x^{0.4}}+90}{\frac{4}{x^{0.4}}+15} * 1=\frac{\frac{160}{x^{0.4}}+90}{\frac{4}{x^{0.4}}+15} * \frac{x^{0.4}}{x^{0.4}}=\frac{\left(\frac{160}{x^{0.4}}+90\right) * x^{0.4}}{\left(\frac{4}{x^{0.4}}+15\right) * x^{0.4}}=\frac{160+90 x^{0.4}}{4+15 x^{0.4}}$.
3. $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} \frac{160 x^{-0.4}+90}{4 x^{-0.4}+15}=\lim _{x \rightarrow 0} \frac{160+90 x^{0.4}}{4+15 x^{0.4}}=\frac{160}{4}=40$.

Answer:

So, the diameter of the cat's pupils due to very intense light is 6 . And the diameter of the cat's pupil for as light diminishes to a minimum intensity is 40 .

