Answer on Question\#41419, Math, Integral Calculus

Evaluate $f x y$ at a point (x, y) for the function f defined by $f(x, y)=x(1 / \tan y)$.
Using Schwarz's Theorem evaluate fyx at the point (x, y).

Solution.

$$
\begin{gathered}
f(x, y)=\frac{x}{\tan y} \\
f_{x}(x, y)=\frac{1}{\tan y} \\
f_{x y}(x, y)=\left(\frac{1}{\tan y}\right)_{y}=-\frac{1}{\tan ^{2} y}\left(\frac{1}{\cos ^{2} y}\right)=-\frac{1}{\sin ^{2} y}
\end{gathered}
$$

THEOREM (H. A. Schwarz). Suppose that f is a function of two variables such that $f_{x y}^{\prime \prime}$ and $f_{y x}^{\prime \prime}$ both exist and are continuous at some point $\left(x_{0} ; y_{0}\right)$. Then

$$
f_{x y}^{\prime \prime}\left(x_{0} ; y_{0}\right)=f_{y x}^{\prime \prime}\left(x_{0} ; y_{0}\right)
$$

Thus,

$$
f_{y x}(x, y)=f_{x y}(x, y)=-\frac{1}{\sin ^{2} y}=-\csc y
$$

Answer: $f_{y x}(x, y)=f_{x y}(x, y)=-\csc y$

