Answer on Question \# 41418 - Math - Calculus

Show that the equation $x 5+y 5-16 \times 3$ y-1=0 determines a solution fi around the point $x=1$ such that $\mathrm{fi}(1)=2$. Find the first derivative of the solution and its value at $(1,2)$.

Solution.

We have the equation

$$
x^{5}+y^{5}-16 x^{3} y-1=0
$$

or

$$
F(x, y)=0
$$

From the Implicit Function Theorem we can write the equation as

$$
F(x, \phi(x))=0 \Leftrightarrow y=\phi(x)
$$

Let $y=2$ at $x=1($ or $\phi(1)=2)$:

$$
1^{5}+2^{5}-16 \cdot 1^{5} \cdot 2-1=1+32-32-1=0
$$

So our equation determines the solution around the point $x=1$.
Then find first derivative of the solution at $(1,2)$:

$$
\begin{gathered}
f^{\prime}(x)=-\frac{F_{x}^{\prime}(x, y)}{F_{y}^{\prime}(x, y)}=-\frac{5 x^{4}-48 x^{2} y}{5 y^{4}-16 x^{3}} \\
f^{\prime}(1)=-\frac{F_{x}^{\prime}(1,2)}{F_{y}^{\prime}(1,2)}=-\frac{5 \cdot 1^{4}-48 \cdot 1^{2} \cdot 2}{5 \cdot 2^{4}-16 \cdot 1^{3}}=\frac{91}{64}
\end{gathered}
$$

Answer: $f^{\prime}(1)=\frac{91}{64}$.

