Two floppies are selected at random without replacement from a box containing 7 good and 3 defective floppies. Let A be the event that the first floppy drawn is defective, and let B be the event that the second floppy drawn is defective.
(i) Find the conditional probabilities $P(B \mid A)$ and $P\left(B \mid A^{c}\right)$.
(ii) Show that $P(B)=P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)=P(A)$.

Solution

The probability that the first floppy drawn is defective is $P(A)=\frac{3}{10}$. The probability that the first floppy drawn is good is $P\left(A^{c}\right)=\frac{7}{10}$.
(i) The probability that the second floppy drawn is defective if the first floppy drawn is defective is

$$
P(B \mid A)=\frac{2}{9}
$$

because 1 defective floppy from $7+3=10$ was drawn.
The probability that the second floppy drawn is defective if the first floppy drawn is good is

$$
P\left(B \mid A^{c}\right)=\frac{3}{9}
$$

because 1 good floppy from 7+3=10 was drawn.
(ii) $\quad P(B)=P(B \mid A) P(A)+P\left(B \mid A^{c}\right) P\left(A^{c}\right)=\frac{2}{9} \cdot \frac{3}{10}+\frac{3}{9} \cdot \frac{7}{10}=\frac{3(2+7)}{90}=\frac{3}{10}=P(A)$.

