Answer Question \#41401, Integral Calculus

Find and classify the stationary points of $f(x, y)=y^{2}-x^{2}+3 x y$.

Solution:

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{\partial f}{\partial x}=-2 x+3 y=0 \\
\frac{\partial f}{\partial y}=2 y+3 x=0
\end{array} \quad=>\quad x=0 ; y=0\right. \\
& (0,0)-\text { is a critical (stationary) point } \\
& \left\{\begin{array}{l}
\frac{\partial^{2} f}{\partial x^{2}}=-2 \\
\frac{\partial^{2} f}{\partial y^{2}}=2 \quad=>\quad D=\left(\begin{array}{cc}
-2 & 3 \\
3 & 2
\end{array}\right) \\
\frac{\partial^{2} f}{\partial x \partial y}=3
\end{array}\right.
\end{aligned}
$$

Determinant of matrix D is:

$$
\left|\begin{array}{cc}
-2 & 3 \\
3 & 2
\end{array}\right|=-2 * 2-3 * 3=-4-9=-13<0
$$

And matrix D don't depends of x and y, so all critical points are saddle points. It means that $(0,0)$ is a saddle point.

