Answer on Question \# 41380, Math, Integral Calculus

Compute the jacobian matrices using the chain rule for $z=u 2+v 2$.
where $u=2 x+7, v=3 x+y+7$.

Solution:

We have function $z(u, v)$ depends on 2 variables u and v. So the Jacobian matrix is the next:

Jacobian matrix of composition is equal to product of Jacobian matrices. $J_{\psi \circ \varphi}(x)=J_{\psi}(\varphi(x)) J_{\varphi}(x)$

$$
\left.\begin{array}{c}
\varphi(u, v)=u^{2}+v^{2} \\
\vec{\psi}(x, y):\binom{u=2 x+7}{v=3 x+y+7} \\
J_{\varphi}=\left(\frac{\partial \varphi}{d u} \frac{\partial \varphi}{d v}\right)=\left(\begin{array}{ll}
2 u & 2 v
\end{array}\right)=\left(\begin{array}{ll}
4 x+14 & 6 x+2 y+14
\end{array}\right) \\
J_{\psi}=\cdots\left(\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{d y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right)=\left(\begin{array}{ll}
2 & 0 \\
3 & 1
\end{array}\right) \\
\boldsymbol{J}=J_{\varphi} * J_{\psi}=(\mathbf{4 x}+\mathbf{1 4} \\
\mathbf{6 x}+\mathbf{2 y}+\mathbf{1 4})\left(\begin{array}{ll}
\mathbf{2} & \mathbf{0} \\
\mathbf{3} & \mathbf{1}
\end{array}\right) \\
=(\mathbf{2 4 x}+\mathbf{6 y}+\mathbf{7 0} \\
\mathbf{6 x}+\mathbf{2 y}+\mathbf{1 4}
\end{array}\right), ~ l
$$

