Answer on Question \#41222 - Math - Statistics and Probability

At a university, the average cost of books per student has been $\$ 400$ per student per semester. The Dean of Students believes that the costs are increasing and that the average is now greater than $\$ 400$. He surveys a sample of 40 students and finds that for the most recent semester their average cost was $\$ 430$ with a standard deviation of $\$ 80$. What is the test value for this hypothesis test?

Solution

The formulation of the null and alternative hypotheses should be
$H_{0}: \mu=400$ versus $H_{1}: \mu>400$.
The t test statistic (test value) is $T=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}=\frac{430-400}{\frac{80}{\sqrt{40}}}=2.37$, degrees of freedom d.f. $=n-1=39$.
We test at the level of significance $\alpha=0.05$. Since H_{1} is one-tailed, we set the rejection region $R: T \geq t_{0.05}$.

From the t table we find that $t_{0.05}$ with d.f. $=39$ is close to 1.684 (but it is smaller than this value). Because the observed value $t=2.37$ is greater than 1.684 , the null hypothesis is rejected at $\alpha=0.05$.

Conclusion: there is strong evidence that the average cost of books is now greater than $\$ 400$ (with $\alpha=0.05$).

Remark. Since $n=40$ (large sample), we can also use normal approximation (the z test statistic $Z=\frac{\bar{x}-\mu_{0}}{\frac{s}{\sqrt{n}}}$ is the same, rejection region is $R: Z \geq z_{0.05}=1.645$, conclusion is the same).

