Answer on Question \# 41216 - Math - Linear Algebra

Find z by the use of determinant :

$$
\left\{\begin{array}{c}
3 x-4 y+2 z+8=0 \\
x+5 y-3 z+2=0 \\
5 x+3 y-z+6=0
\end{array}\right.
$$

Solution.

$$
\left\{\begin{array} { l }
{ 3 \mathrm { x } - 4 \mathrm { y } + 2 \mathrm { z } + 8 = 0 } \\
{ \mathrm { x } + 5 \mathrm { y } - 3 \mathrm { z } + 2 = 0 } \\
{ 5 \mathrm { x } + 3 \mathrm { y } - \mathrm { z } + 6 = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
3 \mathrm{x}-4 \mathrm{y}+2 \mathrm{z}=-8 \\
\mathrm{x}+5 \mathrm{y}-3 \mathrm{z}=-2 \\
5 \mathrm{x}+3 \mathrm{y}-\mathrm{z}=-6
\end{array} \Leftrightarrow\left(\begin{array}{ccc}
3 & -4 & 2 \\
1 & 5 & -3 \\
5 & 3 & -1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
-8 \\
-2 \\
-6
\end{array}\right)\right.\right.
$$

Hence:

$$
z=\frac{\left|\begin{array}{ccc}
3 & -4 & -8 \\
1 & 5 & -2 \\
5 & 3 & -6
\end{array}\right|}{\left|\begin{array}{ccc}
3 & -4 & 2 \\
1 & 5 & -3 \\
5 & 3 & -1
\end{array}\right|}=
$$

$$
\begin{gathered}
=\frac{3 \cdot 5 \cdot(-6)+1 \cdot 3 \cdot(-8)+5 \cdot(-4) \cdot(-2)-5 \cdot 5 \cdot(-8)-1 \cdot(-4) \cdot(-6)-3 \cdot 3 \cdot(-2)}{3 \cdot 5 \cdot(-1)+1 \cdot 3 \cdot 2+5 \cdot(-4) \cdot(-3)-5 \cdot 5 \cdot 2-1 \cdot(-4) \cdot(-1)-3 \cdot 3 \cdot(-3)} \\
=\frac{-90-24+40+200-24+18}{-15+6+60-50-4+27}=\frac{120}{24}=5 .
\end{gathered}
$$

Answer.

$z=5$.

