Answer on Question # 41154 - Math - Integral Calculus

Can L' Hospital's rule the applied to evaluate the limit $\lim x \text{ tends to (pi)/2 (1-sin x)/cos } x$. If yes, evaluate the limit .

Solution.

Because the functions $f(x)=1-\sin x$ and $g(x)=\cos x$ are differentiable on an open interval containing pi/2 and $f\left(\frac{\pi}{2}\right)=g\left(\frac{\pi}{2}\right)=\left[\frac{0}{0}\right]$, $g'(x)\neq 0$ we can apply L'Hospital's rule.

We have the limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x}$$

Evaluate the limit:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \left[\frac{1 - \sin \frac{\pi}{2}}{\cos \frac{\pi}{2}} \right] = \left[\frac{0}{0} \right]$$

Then we can use L'Hopital's rule:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = \lim_{x \to \frac{\pi}{2}} \frac{-\cos x}{-\sin x} = \lim_{x \to \frac{\pi}{2}} \cot x = \cot \frac{\pi}{2} = 0$$

Answer:

$$\lim_{x \to \frac{\pi}{2}} \frac{1 - \sin x}{\cos x} = 0$$