Answer on Question \# 41150 - Math - Differential Calculus

Using Jacobi's method find the complete integral of the equation $2 A x z+3 B y 2+B 2 C=0$.

Solution.

We have the equation:

$$
2 A x z+3 B y^{2}+B^{2} C=0
$$

Rewrite our equation:

$$
2 a_{1} x_{1} x_{3}+3 a_{2} x_{2}^{2}+a_{2}^{2} a_{3}=0
$$

where $\left\{a_{1}, a_{2}, a_{3}\right\}=\{A, B, C\}$ and $\left\{x_{1}, x_{2}, x_{3}\right\}=\{x, y, z\}$.
It is the Hamilton-Jacobi equation in the form:

$$
S\left(x_{1}, x_{2}, x_{3}, a_{1}, a_{2}, a_{3}\right)=0
$$

The sequences

$$
\frac{\partial S}{\partial a_{i}}=b_{j}, b_{j}=\text { const },
$$

determine the solutions of the equation.
So find it:

$$
\begin{gathered}
\frac{\partial S}{\partial A}=2 x z, \quad \frac{\partial S}{\partial B}=3 y^{2}+2 B C, \quad \frac{\partial S}{\partial C}=B^{2} \\
\frac{\partial S}{\partial x}=2 A z, \quad \frac{\partial S}{\partial y}=6 B y, \quad \frac{\partial S}{\partial z}=2 A x
\end{gathered}
$$

Answer:

$$
\left\{\begin{array} { l }
{ \frac { \partial S } { \partial A } = 2 x z , } \\
{ \frac { \partial S } { \partial B } = 3 y ^ { 2 } + 2 B C , } \\
{ \frac { \partial S } { \partial C } = B ^ { 2 } , }
\end{array} \quad \left\{\begin{array}{l}
\frac{\partial S}{\partial x}=2 A z \\
\frac{\partial S}{\partial y}=6 B y \\
\frac{\partial S}{\partial z}=2 A x
\end{array}\right.\right.
$$

