Answer on Question # 40904 - Math - Functional Analysis

Question. If Z is an (n-1)-dimensional subspace of an n-dimensioned vector space X, show that Z is the null space of a suitable linear functional f on X, which is uniquely determined to within a scalar multiple.

Solution. Let e_1, \ldots, e_{n-1} be a basis for Z. Since dim X = n, there exists a vector $e_n \in X$ such that the vectors

$$e_1, \ldots, e_{n-1}, e_n$$

constitute a basis for X.

Then each $x \in X$ can be uniquely represented as a linear combination of $\{e_i\}_{i=1}^n$, that

$$x = a_1 e_1 + \dots + a_n e_n$$

for a unique n-tuple of numbers (a_1, \ldots, a_n) and these numbers are called the *coordinates* of x in this basis. Also notice that $x = (a_1, \ldots, a_n) \in Z$ if and only if $a_n = 0$.

Furthermore, every linear functional $f: X \to \mathbb{R}$ is uniquely determined by its values on basis vectors e_1, \ldots, e_n . Indeed, denote $a_i = f(e_i)$, then for any $x = (x_1, \ldots, x_n) = f(e_i)$ $x_1e_1 + \cdots + x_ne_n$

$$f(x) = f(x_1, \dots, x_n) = f(x_1e_1 + \dots + x_ne_n) = x_1f(e_1) + \dots + x_nf(e_n) = a_1x_1 + \dots + a_nx_n.$$

We should construct a linear functional $f: X \to \mathbb{R}$ such that f(x) = 0 if and only if $x \in \mathbb{Z}$. Since $e_1, \ldots, e_{n-1} \in \mathbb{Z}$ and $e_n \notin \mathbb{Z}$, it follows that

$$f(e_1) = \dots = f(e_{n-1}) = 0$$

and

$$f(e_n) \neq 0$$
.

Therefore

$$f(x) = f(x_1e_1 + \dots + x_ne_n) = x_nf(e_n),$$

so f is uniquely determined by its non-zero value of e_n .

Thus for any $a \in \mathbb{R} \setminus \{0\}$ the functional $f_a(x_1, \dots, x_n) = ax_n$ has the required properties: f(x) = 0 if and only if $x \in Z$. In particular, such f exists.

Moreover, if $f_b(x_1, \ldots, x_n) = bx_n$ is another such linear functional with $b \in \mathbb{R} \setminus \{0\}$,

$$f_b(x) = bx_n = \frac{b}{a} \cdot ax_n = \frac{b}{a} \cdot f_a(x),$$

 $f_b(x) = bx_n = \frac{b}{a} \cdot ax_n = \frac{b}{a} \cdot f_a(x),$ and so they differs by constant multiple $\frac{b}{a}$.

Thus a linear functional f on X for which Z is a null space exist and is uniquely determined to within a scalar multiple.