Answer on Question \# 40856 - Math - Linear Algebra:

Solve the set of linear equations by Guassian elimination method:

$$
\left\{\begin{array}{c}
a+2 b+3 c=5 \\
3 a-b+2 c=8 \\
4 a-6 b-4 c=-2
\end{array}\right.
$$

Find c.

Solution.

Write the system in the matrix form:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & -1 & 2 \\
4 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
5 \\
8 \\
-2
\end{array}\right) ;
$$

Lead it to a triangular form. Firstly, subtract the first row, multiplied by 3, from the second row and subtract the first row, multiplied by 4 , from the third row:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & -7 & -7 \\
0 & -14 & -16
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
5 \\
-7 \\
-22
\end{array}\right) ;
$$

Then divide the second row by -7 :

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & -14 & -16
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
5 \\
1 \\
-22
\end{array}\right) ;
$$

Now add the second row. Multiplied by 14, to the third row:

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & -2
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
5 \\
1 \\
-8
\end{array}\right) ;
$$

Lastly, divide the third row by -2:

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{l}
5 \\
1 \\
4
\end{array}\right) ;
$$

Hence:

$$
c=4 \Rightarrow b=1-c=-3 \Rightarrow a=5-2 b-3 c=-1 \Rightarrow\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-3 \\
4
\end{array}\right) .
$$

Answer.

$c=4$.

