Answer on Question \#40830 - Math - Functional Analysis

Question. If Z is an $(n-1)$-dimensional subspace of an n-dimensioned vector space X, show that Z is the null space of a suitable linear functional f on X, which is uniquely determined to within a scalar multiple.

Solution. Let e_{1}, \ldots, e_{n-1} be a basis for Z. Since $\operatorname{dim} X=n$, there exists a vector $e_{n} \in X$ such that the vectors

$$
e_{1}, \ldots, e_{n-1}, e_{n}
$$

constitute a basis for X.
Then each $x \in X$ can be uniquely represented as a linear combination of $\left\{e_{i}\right\}_{i=1}^{n}$, that is

$$
x=a_{1} e_{1}+\cdots+a_{n} e_{n}
$$

for a unique n-tuple of numbers $\left(a_{1}, \ldots, a_{n}\right)$ and these numbers are called the coordinates of x in this basis. Also notice that $x=\left(a_{1}, \ldots, a_{n}\right) \in Z$ if and only if $a_{n}=0$.

Furthermore, every linear functional $f: X \rightarrow \mathbb{R}$ is uniquely determined by its values on basis vectors e_{1}, \ldots, e_{n}. Indeed, denote $a_{i}=f\left(e_{i}\right)$, then for any $x=\left(x_{1}, \ldots, x_{n}\right)=$ $x_{1} e_{1}+\cdots+x_{n} e_{n}$,
$f(x)=f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{1} f\left(e_{1}\right)+\cdots+x_{n} f\left(e_{n}\right)=a_{1} x_{1}+\cdots+a_{n} x_{n}$.
We should construct a linear functional $f: X \rightarrow \mathbb{R}$ such that $f(x)=0$ if and only if $x \in Z$. Since $e_{1}, \ldots, e_{n-1} \in Z$ and $e_{n} \notin Z$, it follows that

$$
f\left(e_{1}\right)=\cdots=f\left(e_{n-1}\right)=0
$$

and

$$
f\left(e_{n}\right) \neq 0
$$

Therefore

$$
f(x)=f\left(x_{1} e_{1}+\cdots+x_{n} e_{n}\right)=x_{n} f\left(e_{n}\right)
$$

so f is uniquely determined by its non-zero value of e_{n}.
Thus for any $a \in \mathbb{R} \backslash\{0\}$ the functional $f_{a}\left(x_{1}, \ldots, x_{n}\right)=a x_{n}$ has the required properties: $f(x)=0$ if and only if $x \in Z$. In particular, such f exists.

Moreover, if $f_{b}\left(x_{1}, \ldots, x_{n}\right)=b x_{n}$ is another such linear functional with $b \in \mathbb{R} \backslash\{0\}$, then

$$
f_{b}(x)=b x_{n}=\frac{b}{a} \cdot a x_{n}=\frac{b}{a} \cdot f_{a}(x),
$$

and so they differs by constant multiple $\frac{b}{a}$.
Thus a linear functional f on X for ${ }^{\text {which }} Z$ is a null space exist and is uniquely determined to within a scalar multiple.

