Answer on Question \#40792- Math - Linear Algebra

a) Which of the following functions are 1-1 and which are onto? Justify your answer.
i) $f: R \rightarrow R_{0}$ given by $f(x)=x^{2}$ where R_{0} is the set fx 2 Rjx 0 g .
ii) $f: R \rightarrow R$ given by $f(x)=x^{2}+x+1$.

Solution:

The function is injective or 1 to 1 if every element of the function's codomain is the image of at most one element of its domain.

The function f from a set X to a set Y is surjective (or onto), or a surjection, if every element y in Y has a corresponding element x in X such that $f(x)=y$.
i) $\quad f: R \rightarrow R_{0}$ given by $f(x)=x^{2}$ If $R_{0}=R \backslash\{0\}$ then f is not onto because for $y=-2$ we can't find a x such that $f(x)=x^{2}$ and it is not 1 to 1 , because $f(1)=f(-1)=1$.
If $R_{0}=[0 ;+\infty)$ then f is onto, because for every y in $[0 ;+\infty)$ exists $x=\sqrt{y}$ such that $\mathrm{y}=\mathrm{f}(\mathrm{x})$ and it is not 1 to 1 , because $\mathrm{f}(-1)=\mathrm{f}(1)$.
ii) $\quad f: R \rightarrow R$ given by $f(x)=x^{2}+x+1$

This function is not onto, because for $y=0$ we can't find x such that $0=x^{2}+x+1$. And it is not 1 to 1 because $f(1)=f(-2)=3$.

