Answer on Question \#40758 - Math - Vector Calculus

Explain why it is not possible for two of a vector's direction angles to be less than 45 .

Solution.

As it is known, there is a theorem for vector's direction angles, which states that $\cos ^{2} \alpha_{x}+\cos ^{2} \alpha_{y}+\cos ^{2} \alpha_{z}=1$.

This is statement can be easily derived, if one substitutes $\frac{a_{x}}{\rightarrow \rightarrow}$ for α_{x} and so on for other angles:
$\cos ^{2} \alpha_{x}+\cos ^{2} \alpha_{y}+\cos ^{2} \alpha_{z}=\frac{a_{x}{ }^{2}}{\mid \vec{a}{ }^{2}}+\frac{a_{y}{ }^{2}}{|\vec{a}|^{2}}+\frac{a_{z}{ }^{2}}{|\vec{a}|^{2}}=\frac{a_{x}{ }^{2}+a_{y}{ }^{2}+a_{z}{ }^{2}}{|\vec{a}|^{2}}=\frac{|\vec{a}|^{2}}{|\vec{a}|^{2}} \equiv 1$.
If two of a vector's direction angles (for e.g., α_{x} and α_{y}) are less than 45°, then $\cos ^{2} \alpha_{x}+\cos ^{2} \alpha_{y}+\cos ^{2} \alpha_{z}>\cos ^{2} 45^{0}+\cos ^{2} 45^{\circ}+\cos ^{2} \alpha_{z}=\frac{1}{2}+\frac{1}{2}+\cos ^{2} \alpha_{z} \geq 1$.

We obtained that $\cos ^{2} \alpha_{x}+\cos ^{2} \alpha_{y}+\cos ^{2} \alpha_{z}>1$, and this inequality contradicts with the initial theorem.

Answer: the statement is correct.

