Answer on Question \#40704 - Math - Calculus

calculate:

1) $\lim 1-\cos x / x+x^{\wedge} 2$
$x \rightarrow 0$
2) $\lim x-2 x^{\wedge} 2 / 3 x^{\wedge} 2+5 x$
3) $\lim (x \sin 1 / x)$
$x \rightarrow \infty$
$x \rightarrow \infty$
4) Show that the sequence $1 / 2,2 / 3,3 / 4,4 / 5, \ldots$ is strictly increasing sequence.

Solution:

1) $\lim _{x \rightarrow 0} \frac{1-\cos x}{x+x^{2}}$

If we substitute $x=0$ we get the form $\frac{0}{0}$. This means we can apply L'Hospital's rule. So we can take the derivative of numerator and the denomenator without changing the limits:
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x+x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{1+2 x}=\frac{0}{1}=0$
2) $\lim _{x \rightarrow \infty} \frac{x-2 x^{2}}{3 x^{2}+5 x}$

We can divide numerator and the denomenator on x^{2} :
$\lim _{x \rightarrow \infty} \frac{x-2 x^{2}}{3 x^{2}+5 x}=\lim _{x \rightarrow \infty} \frac{\frac{x}{x^{2}}-\frac{2 x^{2}}{x^{2}}}{\frac{3 x^{2}}{x^{2}}+\frac{5 x}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}-2}{3+\frac{5}{x}}=-\frac{2}{3}$
3) $\lim _{x \rightarrow \infty} x \sin \frac{1}{x}$

We can apply the La'Hospital rule. For that first of all convert the equation to form such that after applying limit directly we get $\frac{0}{0}$ or $\frac{\text { infinity }}{\text { infinity }}$ form. Then differentiate both the numerator and the denomenator and then apply the limit thus

$$
\begin{gathered}
f(x)=x \cdot \sin \left(\frac{1}{x}\right) \text { convert to } \frac{f(x)}{g(x)} \text { form i.e. } \\
\frac{f(x)}{g(x)}=\sin \frac{\left(\frac{1}{x}\right)}{\frac{1}{x}}
\end{gathered}
$$

which is now in the form of $\frac{0}{0}$, then according to La'Hospital rule

$$
\frac{f(x)}{g(x)}=\frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Thus,

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)}=\frac{-\frac{1}{x^{2} \cos \frac{1}{x}}}{-1 / x^{2}}=\cos \frac{1}{x}
$$

Now we can apply the limit to this derivative which gives

$$
\cos \left(\frac{1}{\infty}\right)=\cos (0)=1
$$

$$
\lim _{x \rightarrow \infty} x \sin \frac{1}{x}=1
$$

4) We have the sequence $\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots\right)$:

$$
\mathrm{a}_{\mathrm{n}}=\frac{\mathrm{n}}{\mathrm{n}+1}
$$

Each term is greater than the last:

$$
a_{n+1}-a_{n}=\frac{n+1}{n+2}-\frac{n}{n+1}=\frac{n^{2}+2 n+1-n^{2}-2 n}{(n+2)(n+1)}=\frac{1}{(n+2)(n+1)}>0 \Rightarrow
$$

The inequality is satisfied for any value of n . (n is a positive integer). Hence, the sequence is strictly monotonically increasing.

