Answer on Question \#39618 - Math - Other

In a factory turning out razor blade, there is a small chance of $1 / 500$ for any blade to be defective. The blades are supplied in a packet of 10 . Use Poisson distribution to calculate the approximate number of packets containing blades with no defective, one defective, two defectives and three defectives blades in a consignment of 10,000 packets.

Solution:

From the conditions above, the probability of defect per razor blade is $p=\frac{1}{500}=0,002$.
$P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}-$ Poisson distribution, where $k \in \mathrm{~N}$ and $\lambda=10 \cdot 0,002=0,02$,
$k=0,1,2,3, k-$ razors number of defects;
$e^{-\lambda}=e^{-0,02} \approx 2,7^{-0,02}=0,9803 ;$
$P(X=0)=\frac{1 \cdot 0,9803}{0!}=0,9803$,
$P(X=1)=\frac{0.02^{1 \cdot 0,9803}}{1!}=0,0196$,
$P(X=2)=\frac{0,02^{2} \cdot 0.9803}{2!}=0,000196$,
$P(X=3)=\frac{0,02^{3} \cdot 0,9803}{3!} \approx 0,0000013$.
Than let calculate the approximate number of packets containing blades with 0,1,2,3 defects $n_{k=0}=10000 \cdot 0,9803=9803$,
$n_{k=1}=10000 \cdot 0,0196=196$,
$n_{k=2}=10000 \cdot 0,000196=2$,
$n_{k=0}=10000 \cdot 0,0000013 \approx 0,01=0$.
Answer: $n_{k=0}=9803, n_{k=1}=196, n_{k=2}=2, n_{k=0}=0$.

