Answer on Question \#40487 - Math - Differential Calculus

We have

$$
\varphi\left(x^{2}+y^{2}-z^{2}, x+y+z\right)=0
$$

or the equations

$$
\begin{gathered}
x^{2}+y^{2}-z^{2}=c_{1} \\
x+y+z=c_{2}
\end{gathered}
$$

By differentiating we get

$$
\begin{gathered}
x d x+y d y-z d z=0 \\
d x+d y+d z=0
\end{gathered}
$$

or the equations of the form

$$
\begin{gathered}
x P+y Q-z R=0 \\
P+Q+R=0
\end{gathered}
$$

Our differential equation in the standard form

$$
P p+Q q=R
$$

or

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}
$$

Each fraction is equal to

$$
\frac{P_{1} d x+Q_{1} d y+R_{1} d z}{P_{1} P+Q_{1} Q+R_{1} R}
$$

Multipliers may be chosen such that the numerator $P_{1} d x+Q_{1} d y+R_{1} d z$ is an exact differential of the denominator $P_{1} P+Q_{1} Q+R_{1} R$.

Let

$$
P=z+y, Q=x+z, R=y-x
$$

Then

$$
d\left(P_{1}(z+y)+Q_{1}(x+z)+R_{1}(y-x)\right)=P_{1} d x+Q_{1} d y+R_{1} d z
$$

So we have the first-order differential equation

$$
(z+y) p+(x+z) q=y-x
$$

