

Answer on Question #40467, Differential Calculus, Equations

Find the integral surface of the linear partial differential equation
 $x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z$, which contains the straight line $x + y = 0, z = 1$.

Solution.

Given

$$x(y^2 + z)p - y(x^2 + z)q = (x^2 - y^2)z \quad (1)$$

Lagrange's auxiliary equations of (1) are

$$\frac{dx}{x(y^2 + z)} = \frac{dy}{-y(x^2 + z)} = \frac{dz}{(x^2 - y^2)z}$$

thus, the solution is the system of equations:

$$\begin{cases} xyz = c_1 \\ x^2 + y^2 - 2z = c_2 \end{cases}$$

Taking t as a parameter, the given equation of the straight line $x + y = 0, z = 1$ can be put in parametric form $x = t, y = -t, z = 1$.

Using this,

$$\begin{cases} xyz = c_1 \\ x^2 + y^2 - 2z = c_2 \end{cases}$$

may be re-written as

$$\begin{cases} -t^2 = c_1 \\ 2t^2 - 2 = c_2 \end{cases}$$

Eliminating t from the equations, we have

$$\begin{cases} 2(-c_1) - 2 = c_2 \\ 2c_1 + c_2 + 2 = 0 \end{cases}$$

Putting values of c_1 and c_2 , the desired integral surface is

$$2xyz + x^2 + y^2 - 2z + 2 = 0$$

Answer: $2xyz + x^2 + y^2 - 2z + 2 = 0$