Answer on Question #40422 - Math - Combinatorics | Number Theory

Show that k | v is necessary to form a (v, k, lenda)-design.

Solution.

Let's start with a definition.

A balanced incomplete block design (BIBD) with parameters (v, k, λ) is an ordered pair (V, \mathcal{B}) where V is a set of v objects called *points*, \mathcal{B} is a collection of not necessarily distinct k-subsets of V called *blocks*, and every pair of distinct points are contained in exactly λ blocks. We can say simply " (v, k, λ) -design".

So if there exists a (v, k, λ) -design, then

- 1. $k(k-1) \mid \lambda v(v-1)$,
- 2. $(k-1) \mid \lambda(v-1)$.

These conditions are necessary for the existence of a BIBD with parameters (v, k, λ) . A good way to see this is to consider the contrapositive of the statement: *if either* (1) *or* (2) *is false, then a* (v, k, λ) -*design does not exist*. The conditions are not sufficient: it is false that if v, k and λ are such that $(k - 1) | \lambda(v - 1)$ and $k(k - 1) | \lambda v(v - 1)$, then a (v, k, λ) -design exists.

So the condition $k \mid v$ is necessary for the existence of a resolvable (v, k, λ) -design.