

Answer on Question #40414 – Math – Analytic Geometry

If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ be three unit vectors such that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \mathbf{b}/2$. Find the angle which \mathbf{a} makes with \mathbf{b} & \mathbf{c} , \mathbf{b} & \mathbf{c} being non-parallel.

Solution.

Let angles between \vec{a} and \vec{b} and between \vec{a} and \vec{c} be α and β respectively.

We have,

$$\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b}}{2}$$

By property $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \cdot \vec{c}$:

$$(\vec{a} \cdot \vec{c}) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \cdot \vec{c} = \frac{\vec{b}}{2}$$

$$\left(\vec{a} \cdot \vec{c} - \frac{1}{2} \right) \cdot \vec{b} - (\vec{a} \cdot \vec{b}) \cdot \vec{c} = 0$$

or

$$\vec{a} \cdot \vec{c} = \frac{1}{2} \quad \text{and} \quad \vec{a} \cdot \vec{b} = 0 \quad (\text{As } \vec{b} \text{ and } \vec{c} \text{ are non-parallel})$$

Then the angles can be found:

$$\cos \beta = \frac{1}{2}, \quad \cos \alpha = 0$$

or

$$\beta = \frac{\pi}{3}, \quad \alpha = \frac{\pi}{2}.$$

Answer: angle between \vec{a} and \vec{b} is $\pi/3$, angle between \vec{a} and \vec{c} is $\pi/2$.