Answer on Question \#40388 - Math - Differential Calculus

Find the differential equation of the space curve in which the two families of surfaces $a \times 2+b y 2+c z 2=u$ and $a \times 2+b 2 y 2+c 2 z 2=v$ intersect.

Solution.

We have the two families of surfaces:

$$
u(x, y, z)=a x^{2}+b y^{2}+c z^{2}=0, \quad v(x, y, z)=a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}=0
$$

Let's find the differential equations of the space curve. Form the matrix of partial derivatives:

$$
\left(\begin{array}{ccc}
u_{x}^{\prime} & u_{y}^{\prime} & u_{z}^{\prime} \\
v_{x}^{\prime} & v_{y}^{\prime} & v_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
2 a x & 2 b y & 2 c z \\
2 a^{2} x & 2 b^{2} y & 2 c^{2} z
\end{array}\right)
$$

Then find determinants of the matrix:

$$
\begin{aligned}
& \left|\begin{array}{ll}
u_{x}^{\prime} & u_{y}^{\prime} \\
v_{x}^{\prime} & v_{y}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 a x & 2 b y \\
2 a^{2} x & 2 b^{2} y
\end{array}\right|=4 a b^{2} x y-4 a^{2} b x y=4 a b x y(b-a)=f_{1} \\
& \left|\begin{array}{cc}
u_{y}^{\prime} & u_{z}^{\prime} \\
v_{y}^{\prime} & v_{z}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 b y & 2 c z \\
2 b^{2} y & 2 c^{2} z
\end{array}\right|=4 b c^{2} y z-4 b^{2} c y z=4 b c y z(c-b)=f_{2} \\
& \left|\begin{array}{cc}
u_{z}^{\prime} & u_{x}^{\prime} \\
v_{z}^{\prime} & v_{x}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 c z & 2 a x \\
2 c^{2} z & 2 a^{2} x
\end{array}\right|=4 c a^{2} z x-4 c^{2} a z x=4 c a z x(a-c)=f_{3}
\end{aligned}
$$

So, we have the differential equations:

$$
\left\{\begin{array}{l}
4 a b x y(b-a)=f_{1} \\
4 b c y z(c-b)=f_{2} \\
4 \operatorname{cazx}(a-c)=f_{3}
\end{array}\right.
$$

that completely describe the space curve.

