Answer on Question \#40381, Math, Linear Algebra
If \boldsymbol{V} is an eigenvector of an $n \times n$ invertible matrix A, then \boldsymbol{V} is also an eigenvector of the matrix A^{2}.
Solution.

Suppose

$$
A \boldsymbol{V}=\lambda \boldsymbol{V}
$$

Then we have

$$
A^{2} \boldsymbol{V}=A(A \boldsymbol{V})=A(\lambda \boldsymbol{V})=\lambda A \boldsymbol{V}=\lambda^{2} \boldsymbol{V}
$$

Answer:

So \boldsymbol{V} is an eigenvalue of A^{2} with eigenvalue λ^{2}.

