Answer on Question \#40024, Math, Linear Algebra

Find the normal canonical form of the quadratic form $2 x y+2 y z-x 2-y 2-z 2$. Hence, compute its signature.

Solution.

We should use Lagrange's Reduction. The reduction of a quadratic form to canonical form can be carried out by a procedure known as Lagrange's Reduction, which consists essentially of repeated completing of the square.

$$
Q=2 x y+2 y z-x^{2}-y^{2}-z^{2}=
$$

rewrite it

$$
=-x^{2}+2 x y-y^{2}+2 y z-z^{2}=
$$

First we should complete the square of terms with x :

$$
=-\left(x^{2}-2 x y+y^{2}\right)-z^{2}+2 y z=-(x-y)^{2}-z^{2}+2 y z=-(x-y)^{2}+Q_{1}
$$

Do it with Q_{1} :

$$
Q_{1}=-z^{2}+2 y z=-z^{2}+2 y z-y^{2}+y^{2}=-\left(z^{2}-2 y z+y^{2}\right)+y^{2}=-(z-y)^{2}+y^{2}
$$

Therefore,

$$
Q=-(x-y)^{2}+y^{2}-(z-y)^{2}
$$

Inspection of this last expression for Q shows those substitutions that will reduce Q to the canonical form :

$$
\begin{gathered}
x^{\prime}=x-y \\
y^{\prime}=y \\
z^{\prime}=z-y
\end{gathered}
$$

Substituting x^{\prime}, y^{\prime} and z^{\prime} into the last expression for Q gives

$$
Q=-x^{\prime 2}+y^{\prime 2}-z^{\prime 2}
$$

which is of the canonical form, where Q is expressed in terms of the new variables x^{\prime}, y^{\prime} and z^{\prime}.

The signature of the quadratic form is the number p of positive squared terms in the reduced form.

So the signature of Q is 1 .
Answer:

$$
\begin{gathered}
Q=-x^{\prime 2}+y^{\prime 2}-z^{\prime 2} \\
\text { Signature }=1
\end{gathered}
$$

