Answer on Question 40061, Math, Analytic Geometry Question: how to reduce $2 x s q u a r e d-3 y s q u a r e-6 x+12 y$ to standard form of a hyperbola. Solution. First let us find the discriminant of the conic section Δ. If the equation is

$$
A_{x x} x^{2}+2 A_{x y} x y+A_{y y} y^{2}+2 B_{x} x+2 B_{y} y+C=0
$$

Then, it is defined as:

$$
\Delta:=\left|\begin{array}{ccc}
A_{x x} & A_{x y} & B_{x} \\
A_{x y} & A_{y y} & B_{y} \\
B_{x} & B_{y} & C
\end{array}\right|
$$

In our case

$$
\Delta=\left|\begin{array}{ccc}
2 & 0 & -3 \\
0 & -3 & 6 \\
-3 & 6 & 0
\end{array}\right|=-45
$$

Next we must find roots of quadratic equation

$$
\lambda^{2}-\left(A_{x x}+A_{y y}\right) \lambda+D=0
$$

where D is determinant

$$
\begin{gathered}
D=\left|\begin{array}{cc}
2 & 0 \\
0 & -3
\end{array}\right|=-6 \\
\lambda^{2}-\lambda-6=0
\end{gathered}
$$

Roots are $\lambda_{1}=3, \lambda_{2}=-2$ So, the a and b of the canonical form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1
$$

can be found as

$$
\begin{gathered}
a^{2}=-\frac{\Delta}{\lambda_{1}^{2} \lambda_{2}}, \quad b^{2}=\frac{\Delta}{\lambda_{1} \lambda_{2}^{2}} \\
a=5 / 2, \quad b=15 / 4
\end{gathered}
$$

The canonical form is

$$
\frac{x^{2}}{5 / 2}-\frac{y^{2}}{15 / 4}=1
$$

