

Answer on Question#40032 – Math – Differential Calculus | Equation

Solve the differential equation $y'' = 1 + (y')^2$.

Solution.

Let $v(x) = y'(x) \rightarrow y'' = v'$ and from our equation:

$$v' = v^2 + 1 \rightarrow \frac{v'}{v^2 + 1} = 1 \rightarrow \int \frac{v'}{v^2 + 1} dx = \int 1 dx \rightarrow \int \frac{1}{v^2 + 1} dv = \int 1 dx \rightarrow$$
$$\rightarrow \arctan(v) = x + c_1 \rightarrow v = \tan(x + c_1).$$

Then: $y' = v = \tan(x + c_1) \rightarrow y = \int \tan(x + c_1) dx \rightarrow y = -\ln(\cos(x + c_1)) + c_2.$

Answer: $y(x) = -\ln(\cos(x + c_1)) + c_2$, where c_1 and c_2 are the arbitrary constants.