

Answer on Question #40030 – Math – Differential Calculus

Solve: $xy' - y = e^y$. Also obtain its singular solution.

Solution:

Solve the Clairaut equation $x \frac{dy(x)}{dx} - y(x) = e^{\frac{dy(x)}{dx}}$:

Subtract $x \frac{dy(x)}{dx}$ from both sides and divide by -1 :

$$y(x) = -e^{\frac{dy(x)}{dx}} + x \frac{dy(x)}{dx}$$

Differentiate both sides with respect to x :

$$\frac{d}{dx} \left(\frac{dy(x)}{dx} \right) = \frac{d}{dx} \left(-e^{\frac{dy(x)}{dx}} \right) - e^{\frac{dy(x)}{dx}} \frac{d^2 y(x)}{dx^2} + x \frac{d^2 y(x)}{dx^2}$$

Factor:

$$\frac{d}{dx} \left(\frac{dy(x)}{dx} \right) = \frac{d}{dx} \left(-e^{\frac{dy(x)}{dx}} \right) + \frac{d^2 y(x)}{dx^2} \left(-e^{\frac{dy(x)}{dx}} + x \right)$$

Subtract $\frac{dy(x)}{dx}$ from both sides:

$$\frac{d^2 y(x)}{dx^2} \left(-e^{\frac{dy(x)}{dx}} + x \right) = 0$$

Solve $\frac{d^2 y(x)}{dx^2} = 0$ and $x - e^{\frac{dy(x)}{dx}} = 0$ separately:

For $\frac{d^2 y(x)}{dx^2} = 0$:

Integrate both sides with respect to x :

$$\frac{d}{dx} \left(\frac{dy(x)}{dx} \right) = \int 0 \, dx = c_1, \text{ where } c_1 \text{ is an arbitrary constant}$$

Substitute $\frac{dy(x)}{dx} = c_1$ into $y(x) = x \frac{dy(x)}{dx} - e^{\frac{dy(x)}{dx}}$:
 $y(x) = -e^{c_1} + c_1 x$

For $x - e^{\frac{dy(x)}{dx}} = 0$:

Solve for $\frac{dy(x)}{dx}$:

$$\frac{dy(x)}{dx} = \log(x)$$

Substitute into $y(x) = x \frac{dy(x)}{dx} - e^{\frac{dy(x)}{dx}}$:
 $y(x) = -x + x \log(x)$

Collect solutions:

Answer:

$$y(x) = -e^{c_1} + c_1 x \text{ or } y(x) = -x + x \log(x)$$