Answer on Question \#40029, Math, Differential Calculus

Question:

A series RLC circuit with R-6 ohm, C-0.02 Farad and L=0.1 has no applied voltage. Find the subsequent current in the circuit if the initial charge, on the capacitor is q and the initial current is zero.

Answer:

Kirchhoff's voltage law:

$$
u_{R}+u_{L}+u_{C}=0
$$

where u_{R}, u_{L}, u_{C} are the voltages across R, L and C respectively.
Substituting in the constitutive equations:

$$
R i(t)+L \frac{d i(t)}{d t}+\frac{1}{C} \int_{-\infty}^{t} i(\tau) d \tau=0
$$

Differentiating and dividing by L :

$$
\frac{d^{2} i(t)}{d t^{2}}+\frac{R}{L} \frac{d i(t)}{d t}+\frac{1}{L C} i(t)=0
$$

This can usefully be expressed in a more generally applicable form:

$$
\begin{gathered}
\frac{d^{2} i(t)}{d t^{2}}+2 \alpha \frac{d i(t)}{d t}+\omega_{0}{ }^{2} i(t)=0 \\
\alpha=\frac{R}{2 L}, \omega_{0}=\frac{1}{\sqrt{L C}}
\end{gathered}
$$

The differential equation has the characteristic equation:

$$
s^{2}+2 \alpha s+\omega_{0}^{2}=0
$$

The roots of the equation in s are:

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

The general solution of the differential equation is an exponential in either root or a linear superposition of both

$$
i(t)=A e^{s_{1} t}+B e^{s_{2} t}
$$

The initial current is zero:

$$
i(0)=A e^{0}+B e^{0}=0
$$

Therefore: $A=-B$

$$
\begin{gathered}
i(t)=A\left(e^{s_{1} t}-e^{s_{2} t}\right)=A e^{-\alpha t}\left(e^{\sqrt{\alpha^{2}-\omega_{0}^{2}} t}-e^{-\sqrt{\alpha^{2}-\omega_{0}^{2}} t}\right) \\
\sqrt{\alpha^{2}-\omega_{0}^{2}}=\sqrt{-100}, \alpha=30
\end{gathered}
$$

therefore $\left(e^{10 i t}-e^{-10 i t}\right)=2 i \sin 10 t, 2 i A=A^{\prime}$:

$$
i(t)=A^{\prime} e^{-30 t} \sin 10 t
$$

The initial charge on the capacitor is q and initial current is zero:

$$
\begin{gathered}
\left.L \frac{d i(t)}{d t}\right|_{t=0}+\frac{q}{C}=0 \\
\left.\frac{d i(t)}{d t}\right|_{t=0}=-\frac{q}{0.001}=10 A^{\prime} \\
A^{\prime}=0.01 q
\end{gathered}
$$

Therefore:

$$
i(t)=0.01 q e^{-30 t} \sin 10 t
$$

