Answer on Question \#40021, Math, Linear Algebra

Let a quadratic form has expression $6 x 2+5 x y+10 y 2$ with respect to the standard basis of R2. Find its expression with respect to the new basis $\{(3,1),(-2,1)\}$ of R2.

Solution.

$$
Q=6 x^{2}+5 x y+10 y^{2}
$$

Standard basis in R^{2} is:

$$
\left\{\binom{1}{0},\binom{0}{1}\right\}
$$

New basis:

$$
\left\{\binom{3}{1},\binom{-2}{1}\right\}
$$

So to write Q with respect to new basis we should go to another terms:

$$
\begin{gathered}
x=3 x^{\prime}+y^{\prime} \\
y=-2 x^{\prime}+y^{\prime}
\end{gathered}
$$

Therefore,

$$
\begin{gathered}
Q^{\prime}=6\left(3 x^{\prime}+y^{\prime}\right)^{2}+5\left(3 x^{\prime}+y^{\prime}\right)\left(-2 x^{\prime}+y^{\prime}\right)+10\left(-2 x^{\prime}+y^{\prime}\right)^{2}= \\
=6\left(9 x^{\prime 2}+6 x^{\prime} y^{\prime}+y^{\prime 2}\right)+5\left(-6 x^{\prime 2}+x^{\prime} y^{\prime}+y^{\prime 2}\right)+10\left(4 x^{\prime 2}-4 x^{\prime} y^{\prime}+y^{\prime 2}\right)= \\
=54 x^{\prime 2}+36 x^{\prime} y^{\prime}+6 y^{\prime 2}-30 x^{\prime 2}+5 x^{\prime} y^{\prime}+5 y^{\prime 2}+40 x^{\prime 2}-40 x^{\prime} y^{\prime}+10 y^{\prime 2}= \\
=64 x^{\prime 2}+x^{\prime} y^{\prime}+21 y^{\prime 2}=Q^{\prime}
\end{gathered}
$$

So Q^{\prime} is a quadratic form is new basis $\left\{\binom{3}{1},\binom{-2}{1}\right\}$.
Answer: $Q^{\prime}=64 x^{\prime 2}+x^{\prime} y^{\prime}+21 y^{\prime 2}$

